probabilistic algorithms

learning objectives

- learn what randomized algorithms are
- learn what they are useful for
- learn about pseudo-randomness

vs randomness

a computer is deterministic by design, so an algorithm executing on a computer is inherently deterministic
yet we can abstractly define the notion of probabilistic or randomized algorithm as follows:
a randomized algorithm is one that receives, in addition to its input data, a stream of random bits used to make random choices
so even for the same input, different executions of a randomized algorithm may give different outputs

deterministic algorithm vs randomized algorithm

why introduce randomness?
because randomized algorithms tend to be much simpler than their deterministic counterpart
because randomized algorithms tend to be more efficient than their deterministic counterpart* *in execution time and memory space
but some randomized algorithms do not always* provide a correct answer (only probabilistically) *always \Leftrightarrow deterministically

principles to construct randomized algorithms

abundance of withesses

fingerprinting

random partitioning

random sampling

foiling the adversary

random ordering

Markov chains

abundance of witnesses

 are these two polynomial of degree $d=5$ identical?$$
\begin{gathered}
p(x)=(x-7)(x-3)(x-1)(x+2)(2 x+5) \\
q(x)=2 x^{5}-13 x^{4}-21 x^{3}+127 x^{2}+121 x-210
\end{gathered}
$$

expanding $p(x)$ may take up to $O\left(d^{2}\right)=O(25)$ time* *provided integer multiplication takes a unit of time
a randomized algorithm can take $O(d)=O(5)$ time

note that:

- computing $p(\dot{x})$ and $q(\dot{x})$ for a given value $\dot{x} \in \mathbb{Z}$ takes $O(d)$ - $p(\dot{x})=q(\dot{x})$ is true if at least one of the following conditions is true I. we have the following polynomial equality $p(x)=q(x)$

2. the value \dot{x} is a root of polynomial $p(x)-q(x)$, i.e., if $p(\dot{x})-q(\dot{x})=0$

- since $p(x)-q(x)$ is of degree $d=5$, it has no more than 5 roots

abundance of witnesses

algorithm

- randomly choose x from a very large range of integer $R \subset \mathbb{Z}$
- compute $r=p(x)-q(x)$
- if $r=0$, then $p(x)=q(x)$ is true with probability $1-\frac{d}{|R|}$

\dot{x} is our potential withess that $p(x) \neq q(x)$

after n trials, the error probability is $\left(\frac{d}{|R|}\right)^{n}$
after $d+1$ trial, the error probability drops to 0

this is a Monte Carlo algorithm

Monte Carlo ξ
Las vegas algorithms
a Monte Carlo algorithm computes in a deterministic time but only provides a correct answer probabilistically
a false-biased Monte Carlo algorithm is always correct when returning false
a true-biased Monte Carlo algorithm is always correct when returning true
a Las vegas algorithm computes in some random time but always* provides a correct answer
*always \Leftrightarrow deterministically
a Monte Carlo algorithm can be turned into a Las vegas algorithm if we have a way to verify that the output is correct

fingerprinting consist in computing much shorter strings of bits from x and y, so-called fingerprints, to then exchange them
a typical fingerprinting function is $h_{p}(s)=h(s) \bmod p$, where $h(s)$ is the integer corresponding to the string of bits s and p is a prime number
$h_{p}(s)$ is called a (high performance) hash function
algorithm bob randomly chooses a prime number p less than M

- bob sends p and $h_{p}(x)$ to alice
- alice checks whether $h_{p}(x)=h_{p}(y)$ and sends the results to bob
foiling the adversary via random ordering
we can see the execution of an algorithm as a zero-sum two-person game the payoff is the execution time
the input a randomized algorithm can be seen as a probabilistic distribution over deterministic algorithms, ie., as mixed strategy for the algorithm player
faced with a mixed strategy, the input player does not know what the algorithm player will do with the input this uncertainty makes it difficult for the input player to choose an input that will slow down the execution time
foiling the adversary via random ordering

the performance of a binary search tree depends on its structure, which in turn depends on the order in which its elements were inserted
we cannot assume insertion are made in random order, so we can end up with a binary search tree with catastrophic performance
how can we get a binary search tree that looks like one resulting from insertions in random order whatever the execution?

foiling the adversary via random ordering given n items with associated keys and priorities, there exists a unique treap containing these n items
this unique treap has the same structure as a binary search tree where these n items would have been inserted in increasing order of priorities
algorithm for inserting key k draw a random priority p
- create new vertex v with v.key $=k$
the random priority acts as a randomized timestamp and v.priority $=p$
- insert v in the treap
at any given time, we have a binary search tree obtained by random insertion

Markor chains

a Markov chain is a stochastic* process satisfying the Markov property, which states that the next state of the process only depends on its present state
*stochastic \Leftrightarrow probabilistic \Leftrightarrow non-deterministic

$$
\operatorname{Pr}\left(X_{n+1}=x \mid X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)=\operatorname{Pr}\left(X_{n+1}=x \mid X_{n}=x_{n}\right)
$$

how to generate randomness in a deterministic machine?

do computers have a real source of random bits?
true random number generator augment computers with a intrinsically nuclear decay radiation, thermal non-deterministic physical source noise from a resistor, etc...
pseudo random number generator
a parameterized set of function $g=\left\{g_{n}\right\}$ such that each function $g_{n}:\langle 0,1\rangle^{n} \rightarrow\langle 0,1\rangle^{t(n)}$ takes a seed string of n bits and stretches to a longer string of length $t(n)$
not polynomial-time test can distinguish the output of g_{n} from a true random sequence of bits

how to generate randomness in a deterministic machine?

 pseudo random number generator

 pseudo random number generator}

```
import random
random.seed(666)
f = random.random()\longrightarrow0.0\leqf< < .0
i = random.randint (2,9) \longrightarrow 2\leqi\leq9
```

import scala.util.Random
val rand = Random
random.setSeed(666)
val $\mathrm{f}=$ rand. nextFloat $\longrightarrow 0.0 \leq \mathrm{f}<1.0$
val $i=$ random.nextInt $(9) \longrightarrow 0 \leq i<9$

```
import Foundation
let \(i=\operatorname{arc4} \operatorname{random}() \longrightarrow 0 \leq i \leq 2^{32}-1\)
let \(\mathrm{j}=\) arc4random_uniform \((9) \longrightarrow 0 \leq \mathrm{j}<9\)
```

