probabi\irﬁc
a\goriﬂnms

learning

system software

objechves

+ learn what randomized a\goriﬂnms are
+ learn what ﬂ\q are useful for

+ learn about pseudo-randomness

o o R. M. Karp. An introduction to

randomized algorithms. Discrete

dder m ‘h ‘S m Applied Mathematics, 34(1-3):165-201,
November 1991.

a computer is deterministic by design, so an algorithm
executing on a computer is inherently deterministic

Jet we can abstractly define the notion of
probabilistic or randomized a\gor'rthm as follows:

a randomized algorithm is one that receives, in
addition to ity input data, a stream of random bits
used fo make random choices

so even for the same input, dfferent executions of a
randomized algorithm may give different outputs

deterministic a\gori'rhm

vs randomned a\gorrthm

vuh1 ntroduce
randommness?

because randomized a\gor'rthms tend to be much
simpler than their deterministic counterpart

because randomized a\gor'rthms tend to be more
efficient than their deterministic counterpart”

*In execuhon ime and memory space

but some randomized algorithms do not always*

provicle a correct answer (onN probabi\irﬁca\\xp
*a\wm,s = del’erminisﬁca\\j

princip\es to construct
randomized a\gori‘ﬂnms

abundance of

fingerprintine
wrhnesses e J

random par‘ﬁﬁovdng

random sampling foiling the adversary

| —

random orclering Markov chaihs

abundance of witnesses

are these two polynomial of degree d =5 idernhcal?

plz)=(x—"7)(z—-3)(x—1)(x+2)(2x +5)

q(z) =22° —13z* — 2123 + 1272% + 121 = — 210

— e — — —_— - — e p——
= — —_ —

exPanding p(x) may take up to O(d?) = 0(25) time”

*provided integer multiplication takes a unit of time

a randomized a\gorirthm can take O(d) = O(5) time ‘ @

nofe < computing p(x) and g(x) for a given value ic?” takes O(d)

that. p() =q@) is true if at least one of the following conditions is true

o . we have the following polynomial equality p(x) = g(x)
2. the value x is a root of polynomial p(x) — g(x), i.e., # p() —q(x) =0

® since p(x) —q(x) is of degree d =5, it has no more than 5 roots

abundance of witnesses

a\gori'thm

* randomly choose i from a very large range of inteqer RC7Z
* compute r=p() - q(x)]

o f r= 0, tHhen p(x) =q(x) is frue with PY'Obﬂbi“"ﬂ 1 — @

i 15 our potential witness that p(v) # g(x)

G‘H’QY n trials ’ ﬂne e€rroy Q‘H'QY" d+1 tnal , {he eYyvYoyvr

probability is (%) : probability drops to 0

this is a Monte Carlo a\gor'rﬂnm

Monte Carlo &
Las Veqgas a\gori‘ﬂnms

a Monte Carlo a\gori'ﬂnm computes in a deterministic
fime but onN provides a correct answer probabi\isﬁca\w

a false-biased Monte Carlo a true-biased Monte Carlo
a\gor’rﬂnm is always correct a\gor'rﬂnm is always correct
when returning false when returning true

a Las Vegas a\gorrﬂnm comPud’es n some random hme
but a\wa1s prov|des a correct answer

*a\wajs = dei‘erminirﬁca\\sj

a Monte Carlo a\gori'rhm can be turrned into a
Las Vegas algorithm H we have a way to
veri&, that the output is correct

[T so8. wa |
| QUANTUA WORLD
HOW CAN WE BE SURE?

bob has x, a very
\ong rhrmg of bits

OH ALICE.. YOURE
THE ONE FOR ME /&

: Fihgerprihﬁng

.10100111000100101110101001010010100101...

s/ they want to check f x =y but their
oy channel has limited bandwidth alice has y, a very
‘* long string of bits

ﬁngerpnwhng consist in computing much shorter strings of bits
from x and y, so-called fingerprints, to then exchange them

a typical fingerprinting function is h,(s) =h(s) mod p , where h(s) is the
integer corresponding to the string of bits s and p is a prime number

hy(s) is called a (high performance) hash function

algorithm & bob randomly chooses a prime number p less than M
% bob sends pand %,(x)to alice
@ alice checks whether 7,(x) =7,(y) and sends the results to bob

hi\img the adversary

via random orderihg

we can see the execution of an a\gor'rﬂnm
as Q@ 2ero-sum fvuo-person game

the paqoﬁ is the execution time
long is good short is good

chooses chooses the
the input @ vyandomized a\gorrthm can be seen as a algorithm

probabilistic distribution over deterministic algorithms,
i.e.,, as mixed strateqy for the algorithm player

faced with a mixed strateqy, the input playjer does not
know what the algorithm plajer will do with the input

this uncertainty makes it difficutt for the input player to
choose an input that will sfow down the execution time

foi\ing the adversary 5

8 24

via yandom ordermg " 0 & €

the performance of a binary search tree depends on
its structure, which in turn depends on the order
in which s elements were inserted

we cannot assume insertion are made wn random
order, so we can end up with a binary search tree
with catastrophic performance @ 0 0 0 0 © ©

how can we gd’ Q bina\r\, search tree that
looks like one resu\‘ﬁng from insertions in
random order whatever the execution?

foi\ing the via random
adversar1 orclering

binary search tree 4 heap - treap

a heap is a binary tree where the vertices on any path
from the root to a leaf increase in value

a treap is a binary tree where each vertex v has
two values, v.key and v.priority and which is a
binary search tree with respect to ey values and
Q heap with respect to priority values

foi\ing the adversary
via random ordering

given 7 items with associated keys and priorities, there
exists a unique freap containing these n items

this unique treap has the same structure as a binary
search tree where these n items would have been
nserted in increasing order of priorities

a\gor'rthm for ihSQY"ﬁhg ke\, k ® draw a random PYiOYi“'\, D

& create new vertex v with v.key =%
the random priority acts and v.priority =p

as a randomized timestamp @ insert v in the treap

at any given time, we have a binary search
tree obtained by random insertion

Markov chains

a Markov chain is a stochastic” process saﬁsf\,ing the
Markov property, which states that the next state of
the process only depends on ity present state

*stochastic & probabilistic & non-deterministic

"0.9 0.075 0.025° B 0.073 B
transition madtrix 0.15 0.8 0.05 N TN N
————lox o3 05] Ml) | ks J D08

0.15 . /!

assume ‘|’ha‘|’ a‘l' hme t, state =2 ‘W\en
at time ¢ + 3, we will have:

0.025
" 0.9 0.075 0.0257°
z¢*39 =10 1 0]|015 08 0.05

[stagnant "'\
1025 0.25 0.5 \ market
[0.7745 0.17875 0.04675" .

=0 1 0][0.3575 0.56825 0.07425
1 0.4675 0.37125 0.16125 | /
= [0.3575 0.56825 0.07425]. V.9

how to genera‘re randomness
in a deterministic machine?

do computers have a real

source of random bits?
true random number generai'or

augmewl’ computers with a intrinsically

nuclear decay radiation, thermal non-deterministic P’”‘,‘ \cal source

roise from a resistor, efc...

. = . _ = e ——— _ _ — | e e ———————
_ _ - — o

Pseudo random number generafor

a parameterized set of function g={g.} such that each
function g,:(0,1)" - (0,1)'™ takes a seed string of n bits and
strefches to a longer string of length ¢(n)

not polynomial-time test can distinquish the
output of g, from a true random sequence of bits

how to gehera‘re randomness

in a deterministic machine?

pseudo random number generafor

A

import random

random. seed (666)
f = random. random() »0.0<f<1.0

i = random.randint(2,9) » 2<1<9

B

’ import scala.util.Random

val rand = Random
random.setSeed(666)
val f = rand.nextFloat »0.0<f<1.0

val i = random.nextInt(9) » 0<1<9

———————

\-’ import Foundation

» 0<1<2%_-1

let i = arcd4random()

let j = arc4random_uniform(9)

B

> 0<3)<9

