
Zero Configuration
Networking

Benoît Garbinato

Zero Configuration Networking © Benoît Garbinato

What is Zeroconf networking?
Zero Configuration Networking (Zeroconf) is a set of standards
that aim at automatically creating a usable IP network in the
absence of dedicated servers or manual configuration

The Zeroconf specification was initiated and driven by Apple, whose
implementation is known as Bonjour (formerly RendezVous)

For this, a Zeroconf solutions must be able to:
‣ allocate IP addresses without a DHCP server

‣ allocate IP Multicast addresses without a MADCAP server

‣ translate names into IP addresses without a DNS server

‣ find services without a directory server

A zeroconf protocol is able to operate correctly in the absence of configured information from either a user or
infrastructure services such as conventional DHCP or DNS servers. Zeroconf protocols may use configured

information, when it is available, but do not rely on it being present.

The Internet Engineering Task Force (IETF)

http://en.wikipedia.org/wiki/Internet_Protocol

Zero Configuration Networking © Benoît Garbinato

Application examples

➋

Printer discovery in an unknown environment
Mobile ad hoc multi-player games
Self-configured real-time collaborative editing
Media content sharing in a wireless network

➊ share

find

Zero Configuration Networking © Benoît Garbinato

Implementations
There exists various implementations of the zeroconf
approach, some of them following the IETF standards

‣ Bonjour (formerly RendezVous) by Apple

‣ Avahi (open source) for Linux and BSD Unix

‣ Windows CE 5.0 by Microsoft

‣ Jini by Sun Microsystems

In the following we focus on Apple’s Bonjour, which
is built into Mac OS X (both IPv4 and IPv6) and
comes with iTunes on Microsoft Windows

not compatible with 
IETF’s standards

compatible with 
IETF’s standards,
based on mDNS

Zero Configuration Networking © Benoît Garbinato

Link to ubiquitous computing
Ubiquitous computing environments can clearly
benefit from MANETS, which require:

‣ no infrastructure

‣ no centralized servers

‣ no network administrator

‣ no static configuration or topology

Zeroconf protocols provide a natural support 
to ubiquitous computing and MANETs

Zero Configuration Networking © Benoît Garbinato

A rich zeroconf scenario

2. C discovers A‘s video content

3. A streams video to C, which
displays it on TV

Ⓐ

Ⓑ

Ⓒ

Ⓓ

1. A advertises its multimedia
content and it availability
to be remotely controlled

4. B discovers A‘s
ability to be
remotely controlled

5. B controls A music
program remotely

6. D advertises its
printing
services

7. A send print
jobs to D, which
prints them

Zero Configuration Networking © Benoît Garbinato

What makes a network anyhow?
A generic view
‣ A unique address assignment scheme

‣ A name-to-address resolution scheme

‣ A service discovery scheme

In traditional Internet/intranets, we have:
‣ DHCP, DNS infrastructures

‣ statically configured hosts

In MANETs, we have none of that...

Zero Configuration Networking © Benoît Garbinato

Unique address assignment
Link-local address assignment in IPv4
‣ relies on the 169.254.0.0/16 prefix, which corresponds to

IP addresses in range [169.254.1.0, 169.254.254.255]

‣ relies on random address selection

‣ relies on ARP-based duplicate address discovery protocol

‣ is described in RFC 3927

Link-local address assignment in IPv6
‣ relies on the FE80::/10 prefix (1111111010 in binary)

‣ relies on a set of rules for selecting addresses(RFC 3484)

‣ relies on a Duplicate Address Discovery protocol (RFC 4862)

‣ is described in RFCs 4862, 4291 and 3484

Zero Configuration Networking © Benoît Garbinato

Name-to-address resolution (1)
Name-to-address resolution in Bonjour is based on an
implementation of the Multicast DNS standard (mDNS)

The client multicasts an almost standard DNS query

The target is a multicast address (group) on port 5353:
• Multicast address for IPv4: 224.0.0.251

• Multicast address for IPv6: FF02::FB

The corresponding host, which is member of the
multicast group, replies to that query

Replies are multicast (all clients benefit from queries)

Zero Configuration Networking © Benoît Garbinato

Name-to-address resolution (2)

To obtain a name, a host does the following:
• it creates the name it wants to use

• it issues a query to see whether there is a conflict

• if it was the first to get the name, it wins

In the case of race condition, the host with the
lower address wins (possibly via negotiation)

Zero Configuration Networking © Benoît Garbinato

Service discovery
Service discovery is also based on mDNS, plus on DNS SD and
DNS SRV records (RFC 2782).

Protocol for service discovery:

1. the server advertises a service type, e.g, «_ipp._tcp.mydomain.com»

2. the client browses for services by querying for PTR records using the
same service type, i.e., «_ipp._tcp.mydomain.com»

3. the client receives a list of «[instance].[service].[domain]» PTR records,
e.g., «HPColorLaserJet4700._ipp._tcp.mydomain.com» 
 «TheBigBossPrinter._ipp._tcp.mydomain.com»

4. this list is typically displayed to the user, who choses one instance

5. the client resolves the chosen service, by issuing an SRV query

6. the client receives a complete SRV record, containing all the necessary
information to connect to the chosen service

Zero Configuration Networking © Benoît Garbinato

Service discovery

Zero Configuration Networking © Benoît Garbinato

public class ServiceAnnouncer implements RegisterListener {
 static final String serviceName = "bank";
 static final String serviceType = "trading";
 static final String serviceProtocol = "tcp";
 static final String registrationType = "_" + serviceType + "._" + serviceProtocol;
 private DNSSDRegistration serviceRecord;
 private int listeningPort;

 public void registerService(int port) {
 try {
 listeningPort = port;
 serviceRecord = DNSSD.register(serviceName, registrationType, listeningPort, this);
 } catch (DNSSDException e) {
 System.err.println("Unable to register the service: " + e.getMessage());
 }
 }
 public void unregisterService() {
 serviceRecord.stop();
 }
public void serviceRegistered(DNSSDRegistration registration, int flags,

String serviceName, String regType, String domain) {
 System.out.println("-> Service " + serviceName + " registered in domain " + domain);
 }
 }
 public void operationFailed(DNSSDService registration, int error) {
 System.err.println("-> Service registration failed");
 }
}

Advertising
a service in Java

ServiceAnnouncer service = new ServiceAnnouncer();
service.registerService(port);
...
service.unregisterService();

import com.apple.dnssd.DNSSD;
import com.apple.dnssd.DNSSDException;
import com.apple.dnssd.DNSSDRegistration;
import com.apple.dnssd.DNSSDService;
import com.apple.dnssd.RegisterListener;
import java.nio.channels.ServerSocketChannel;

Zero Configuration Networking © Benoît Garbinato

Browsing (& finding)
a service in Java
import com.apple.dnssd.BrowseListener;
import com.apple.dnssd.DNSSD;
import com.apple.dnssd.DNSSDException;
import com.apple.dnssd.DNSSDService;

class ServiceBrowser implements BrowseListener {
 public void operationFailed(DNSSDService service, int errorCode) {
 System.out.println("Browse failed " + errorCode);
 System.exit(-1);
 }
 public void serviceFound(DNSSDService browser, int flags, int ifIndex,
 String name, String regType, String domain) {
 System.out.println("Service " + regType + " on " + name + " was found.");
 System.out.println("Interface is " + DNSSD.getNameForIfIndex(ifIndex));
 }
 public void serviceLost(DNSSDService browser, int flags, int ifIndex,
 String name, String regType, String domain) {
 System.out.println("Service " + regType + " on " + name + " was lost.");
 System.out.println("Interface is " + DNSSD.getNameForIfIndex(ifIndex));
 }
 public void startBrowsing() throws DNSSDException, InterruptedException {
 DNSSDService browsing = DNSSD.browse("trading._tcp", this);
 ...
 browsing.stop();
 }
}

public static void main(String[] args) {
 try {
 ServiceBrowser browser= new ServiceBrowser();
 browser.startBrowsing();
 } catch (Exception e) {
 e.printStackTrace();
 System.exit(-1);
 }
}

Zero Configuration Networking © Benoît Garbinato

Resolving a service in Java
public class ServiceResolver implements ResolveListener {
 SocketChannel channel;
 ...
 public void operationFailed(DNSSDService service, int errorCode) {
 System.out.println("Bonjour operation failed " + errorCode);
 System.exit(-1);
 }

 public void serviceResolved(DNSSDService resolver, int flags, int ifIndex,
 String fullName, String theHost, int thePort, TXTRecord txtRecord) {
 ByteBuffer buffer = ...;
 try {
 InetSocketAddress socketAddress = new InetSocketAddress(theHost, thePort);
 channel = SocketChannel.open(socketAddress);
 channel.write(buffer);
 ...
 } catch (Exception e) {
 e.printStackTrace();
 }

 resolver.stop();
 }
 public void startResolving(String name, String domain) {
 DNSSDService resolving = DNSSD.resolve(0, DNSSD.ALL_INTERFACES, name,  
 "trading._tcp", domain, this);
 ...
 resolving.stop();
 }
}

