
Asynchronous
Messaging

Benoît Garbinato

Asynchronous Messaging © Benoît Garbinato

Fundamental idea

Provide a communication abstraction that
decouples collaborating distributed entities

Time decoupling ⇒ asynchrony

Space decoupling ⇒ anonymity

Asynchrony ⇒ persistence of messages

Anonymity ⇒ extra level of indirection

Asynchronous Messaging © Benoît Garbinato

Message-Oriented Middleware
A Message-Oriented Middleware (MOM) is a software
layer acting as a kind of “middle man” between
distributed entities

A MOM is independent of the programming
language, i.e., messages can be exchanged between
distributed entities written in any language*

Most software companies offer middleware products
that fall in the MOM category, e.g., IBM MQ Series,
Oracle AQ, Sun Java System Message Queue,
Microsoft Message Queueing, etc..

*provided a library exists to access the MOM

Asynchronous Messaging © Benoît Garbinato

persistent
storage

Broker & client library
A MOM is often based on a message
broker and a client library.

library

client
app

library

client
app

library

client
app

library

client
app

message
brokerMessage

Oriented
 Middleware

MOM

MOM

MOM

MOM

Asynchronous Messaging © Benoît Garbinato

persistent
storage

Broker & client library | Example
A MOM is often based on a message
broker and a client library.

library

client
app

library

client
app

library

client
app

library

client
app

message
broker

Asynchronous Messaging © Benoît Garbinato

Communication models
Point-to-point model
One-to-one communication between message
producers and consumers, where each message is
consumed by one and only one consumer

Publish/Subscribe (pub/sub) model
One-to-many communication where producers
publish messages and all consumers that have
subscribed receive them

In both models, the notion of message is key

Asynchronous Messaging © Benoît Garbinato

Point-to-Point
Each message is received by only one consumer

Messages are placed in a queue and are persisted
until they are consumed

This model can be used to load-balance tasks
Caveat: fifo processing cannot be guaranteed

library

client
app

library

client
app

message queueing consumersproducers

Asynchronous Messaging © Benoît Garbinato

Publish/Subscribe
Each message is received by all subscribers
Messages are not persisted by default
There exists various message routing variant:

topic-based
content-based
location-based
...

library

client
app

library

client
app

consumersproducers

library

client
app

library

client
app

message routing

Asynchronous Messaging © Benoît Garbinato

Java Messaging Service
The Java Messaging Service (JMS) defines
the asynchronous messaging standard of
the Java EE platform

JMS follows the general Java EE philosophy:
JMS is a specification
JMS implementations rely on existing products (IBM MQ
Series, Oracle AQ, Sun Java System Message Queue, etc.)
JMS-based applications are portable across any
JMS-compliant implementation

Asynchronous Messaging © Benoît Garbinato

JMS & Java EE

Java ME

Midlet Container

client tier web tier persistent tier

application
 server

message
broker

Persistent
Storage

bu
si

n
es

s
ti

er

Java SE

Java SE Java SE

Java SE

Asynchronous Messaging © Benoît Garbinato

consumer

JMS API

Execution time
A producer creates messages & sends them via the JMS API,
specifying a message destination
A consumer receives messages via the JMS API, specifying
a message destination and an optional message selector
A JMS-compliant product provides an implementation of
the JMS API in the form of a client library that knows how
to communicate natively with the message broker

message
brokerJMS API

producer

Asynchronous Messaging © Benoît Garbinato

Start the message
broker (usually 
via the Java EE
application server)

Create the adequate
destinations

Install the JMS client
library on the producer
& the consumer, and
start them

Deployment time

Asynchronous Messaging © Benoît Garbinato

Unified programming model

Two communication models:
point-to-point (destination = queue)
publish/subscribe (destination = topic)

creates

creates

creates
createscreates

send

 receive

connection factory

connection

sessionproducer consumer

message

destination

creates

Asynchronous Messaging © Benoît Garbinato

Development: publisher
public class NewsPublisher {
 static boolean moreNews= true;
 public static void main(String[] args) {
 String topicName= args[0]; String fileName= args[1];
 TopicConnectionFactory connectionFactory = new com.sun.messaging.TopicConnectionFactory();
 TopicConnection connection= null;
 try {
 connection= connectionFactory.createTopicConnection();
 TopicSession session= connection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
 Topic topic= session.createTopic(topicName);
 TopicPublisher publisher = session.createPublisher(topic);
 TextMessage message = session.createTextMessage();
 BufferedReader newsFeed = new BufferedReader(new FileReader(fileName));
 while (moreNews) {
 String theNews= getNextNews(newsFeed);
 message.setText(theNews);
 System.out.println("Publishing \"" + message.getText() + "\"");
 publisher.publish(message);
 }
 } catch (Exception e) {
 System.out.println("Exception occurred: " + e.toString()); System.exit(1);
 }
 }
 ...

Asynchronous Messaging © Benoît Garbinato

Development: subscriber
public class NewsSubscriber implements MessageListener {
 public static void main(String[] args) {
 String topicName= args[0];
 TopicConnectionFactory connectionFactory = new com.sun.messaging.TopicConnectionFactory();
 TopicConnection connection = null;
 try {
 connection = connectionFactory.createTopicConnection();
 TopicSession session = connection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
 Topic topic= new com.sun.messaging.Topic(topicName);
 TopicSubscriber subscriber = session.createSubscriber(topic);
 MessageListener listener= new NewsSubscriber();
 subscriber.setMessageListener(listener);
 connection.start();
 synchronized (listener) { listener.wait(); }
 } catch (Exception e) {
 System.out.println("Exception occurred: " + e.toString()); System.exit(1);
 }
 }
 public void onMessage(javax.jms.Message message) throws Exception {
 String theNews = ((TextMessage) message).getText();
 System.out.println("Learning that \"" + theNews + """);
 if (theNews.endsWith("There are no more news."))
 synchronized (this) { this.notify(); }
 }
 ...

Asynchronous Messaging © Benoît Garbinato

Development: producer
public class OrderProducer {
 public static void main(String[] args) {
 String queueName= args[0];
 ConnectionFactory connectionFactory = new com.sun.messaging.ConnectionFactory();
 Connection connection= null;
 try {
 connection= connectionFactory.createConnection();
 Queue queue= new com.sun.messaging.Queue(queueName);
 Session session= connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
 MessageProducer producer = session.createProducer(queue);
 BufferedReader kbdIn = new BufferedReader(new InputStreamReader(System.in));
 TextMessage message = session.createTextMessage();
 while (true) {
 String order= askForOrder(kbdIn, 3);
 message.setText(order);
 System.out.println("Sending order [" + message.getText() + "]");
 producer.send(message);
 }
 } catch (Exception e) {
 System.out.println("Exception occurred: " + e.toString()); System.exit(1);
 }
 }
 ...

Asynchronous Messaging © Benoît Garbinato

Development: consumer
public class OrderConsumer implements MessageListener {
 public static void main(String[] args) {
 String queueName = args[0];
 ConnectionFactory connectionFactory = new com.sun.messaging.ConnectionFactory();
 Connection connection = null;
 try {
 connection = connectionFactory.createConnection();
 Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
 Queue queue= new com.sun.messaging.Queue(queueName);
 MessageConsumer consumer = session.createConsumer(queue);
 MessageListener listener= new OrderConsumer();
 consumer.setMessageListener(listener);
 connection.start();
 synchronized (listener) { listener.wait(); }
 } catch (Exception e) {
 System.out.println("Exception occurred: " + e.toString()); System.exit(1);
 }
 }
 public void onMessage(javax.jms.Message message) throws Exception {
 String order = ((TextMessage) message).getText();
 System.out.println("Passing order " + order + " on the market");
 if (order.equals("quit"))
 synchronized (this) { this.notify(); }
 }
 ...

Asynchronous Messaging © Benoît Garbinato

Synchronous consumer
public class OrderSynchronousConsumer {
 public static void main(String[] args) {
 String queueName = args[0];
 ConnectionFactory connectionFactory = new com.sun.messaging.ConnectionFactory();
 Connection connection = null;
 try {
 connection = connectionFactory.createConnection();
 Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
 Queue queue= new com.sun.messaging.Queue(queueName);
 MessageConsumer consumer = session.createConsumer(queue);
 connection.start();
 while (true) {
 Message m = consumer.receive();
 ...
 } catch (Exception e) {
 System.out.println("Exception occurred: " + e.toString()); System.exit(1);
 }
 }
}

Asynchronous Messaging © Benoît Garbinato

Message format & types
A JMS message is composed of three parts:

a header holding required fields for the client library
and the message broker, e.g., priority, time-to-live, etc.
a list of optional properties, which act as meta-data used
by the message selection mechanism
a body containing the actual data of the message

There exists various types of messages, which
differ in the type of data they carry in their body,
e.g., Message, TextMessage, ObjectMessage, etc.

properties

header

body

...
Message message = session.createMessage();
...

Asynchronous Messaging © Benoît Garbinato

Message selectors
By default, JMS provides topic-based pub/sub
Thanks to message properties, JMS also support content-based pub/
sub via message selectors
A message selector is a string whose syntax is a subset of the
SQL92 conditional expression syntax

Message message = session.createMessage();
message.setStringProperty("name", "Bob");
message.setIntProperty("age", 30);
message.setStringProperty("address", "Lausanne");

On the publisher:

String selector= "name LIKE 'Max' OR (age > 18 OR address LIKE 'Lausanne')";
TopicSubscriber subscriber = session.createSubscriber(topic, selector, false);

On the subscriber:

Asynchronous Messaging © Benoît Garbinato

Quality of Service (QoS)
Parameterized Quality of Service (QoS) is
usually offered by MOM products

In JMS, the level of QoS depends on the
following parameters:

message ordering, time-to-live & priorities

acknowledgement modes

durable subscriptions

delivery modes

transactions

Asynchronous Messaging © Benoît Garbinato

Order, priority & time-to-live
JMS specifies that messages are received in the order in
which they were sent with respect to a given session and
a given destination (commonly called FIFO order)
JMS specifies no order across destinations or across
sessions sending to the same destination
The notion of priority allows programmers to have finer
control over ordering, via the send() method
Programmers can also specify how long the message
broker should keep a message, via a time-to-live
parameter passed to the send() method

...
producer.send(aMessage, DeliveryMode.NON_PERSISTENT, 3, 5000);
...

time-to-live (in ms)priority

Asynchronous Messaging © Benoît Garbinato

Acknowledgement modes
An acknowledgment informs the MOM (e.g., its
underlying message broker) that the client has
successfully received a message

JMS supports three acknowledgment modes:
AUTO_ACKNOWLEDGE the session automatically acknowledges the
 receipt of each message
CLIENT_ACKNOWLEDGE the client acknowledges programmatically,

invoking acknowledge() on each message
DUPS_OK_ACKNOWLEDGE more efficient variant of AUTO_ACKNOWLEDGE that

can result is duplicate messages in case of failures

...
Session session= connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
...

Asynchronous Messaging © Benoît Garbinato

Delivery modes
In JMS, there exists two delivery modes:

NON_PERSISTENT most efficient but less reliable, since messages are
guaranteed to be delivered at most once, i.e., some
might be lost, e.g., due to some failure (power outage)

PERSISTENT most reliable, since messages are guaranteed to be
delivered once and only once; this is usually achieved
by persisting sent messages on stable storage and
keeping them until they are acknowledged

The delivery mode can be specified at the producer
level or each time a messages is sent:

...
MessageProducer producer = session.createProducer(queue);
producer.setDeliveryMode(DeliveryMode.PERSISTENT);
producer.send(aMessage, DeliveryMode.NON_PERSISTENT, 0, 0);
...

Asynchronous Messaging © Benoît Garbinato

Durable subscriptions
With pub/sub, messages are only received by
subscribers present at the time of the publication
A durable subscriber is one that wants to receive
all messages published on a topic, even those
published when the subscriber is inactive, i.e.,
when it has no associated subscriber object
In order to tell the message broker what messages
are still to be received by a durable subscriber, the
latter must provide a unique name

...
TopicSubscriber subscriber= session.createDurableSubscriber(topic, "Bob");
session.unsubscribe("Bob");
...

Distributed Enterprise Architectures © Benoît Garbinato

Transactions | Reminder

transaction manager

client

data managerB

data managerA

data managerC

en
d

invocations

be
gi
n

newTransaction

pr
ep
ar
e

votes co
mm
it

 o
r a
bo
rt

Two-Phase Commit (2PC)

Asynchronous Messaging © Benoît Garbinato

Transactions with JMS (1)

...
Session session= connection.createSession(true, Session.AUTO_ACKNOWLEDGE);
...

A transaction allows a group of messages to be
managed as a single unit of work

In JMS, transactions are managed by the session

The decision to have a session transacted must be
taken at creation time:

As soon as messages are sent or received via a
transacted session, the transaction starts, i.e., sent/
received messages are grouped as a one unit of work

Asynchronous Messaging © Benoît Garbinato

Transactions with JMS (2)
When method commit() or method rollback() is
called on the transacted session, the current
transaction terminates and a new one is started

Transaction termination affects producers and
consumers in the following manner:
Producer - what happens to messages sent during the transaction?

Commit all grouped messages are effectively sent
Rollback all grouped messages are disposed

Consumer - what happens to messages received during the transaction?
Commit all grouped messages are disposed
Rollback all grouped messages are recovered, i.e., they
might be received again in the next transaction

