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learning 
objectives
learn about encapsulation and abstraction 

learn about classes, objects and methods 

learn how to create your own classes 

learn about modularization and code reuse

hardware

your software

algorithms

system software



an algorithm focuses on a specific computational 
procedure that solve a particular problem

a complete program is however composed of many 
such algorithms, resulting in many lines of code

the linux kernel consists of 15 million lines of code 

* 
the google codebase consists of 2 billion lines of code 

* 
*September 2015

we need software engineering tools 
to manage this complexity

software engineering



software engineering tools can be of different kinds, 
e.g., methodologies (agile), abstract notations (uml), 

source-oriented tools (ide, git), programming language 
constructs that help encapsulate complexity (objects)

software engineering

in this course, we are only interested in 
programming language constructs, in 

particular objects and functions

today we focus on classes, objects and methods

this is known as the object-oriented approach



what's an objects?
represents particular 
“things” from the real 
world, or from some 
problem domain (e.g., 

“my blue rocking chair”)



what's a class?

represents 
all objects of 
a given kind, 
e.g., “chairs”



(what it does)

(how it does it)

implementationspecification vs



specification
no need to know how 
objects are built to use 
them, only what can 
be done with them

the viewpoint of someone 
simply wanting to use 

objects (not design them)

encapsulation principle: allows 
us to hide (encapsulate) the 

complexity of objects

a class specifies the set of 
common behaviors offered by 
objects (instances) of that class

viewpoint



methods & parameters
object have methods 

(operations) that can be 
invoked (called) and define 

their possible behaviors

the set of (public) methods of an object can be seen 
as its contract with the world (its specification)

when we want an object 
to do something for us, we 

call one of its methods
chair.rotate(45)



methods may have 
parameters to pass 

additional information 
needed to execute it

methods & parameters

chair.rotate(45)



the implementation viewpoint is 
concerned with how an object 
actually fulfills its specification 

(its contract)

viewpoint

(how it does it)

The fields and methods 
define how the object will 

behave and are defined by its

class

implementation



instances
many instances 
(objects) can be 
created from a 

single class 
 the class can be seen 
as a kind of object 
factory (or a mold)



the source code of classes defines 
the attributes (fields) and methods 

all objects of the class have

fields

class Chair 

isBroken  (boolean)
age  (integer)

model  (string)
color  (string)



instance myChair

age

color

isBroken

model

"green"

"shell"

5

false

each object stores its own 
values for each field

field Values

field values 
represent the 
object’s state 



two chair instances 
class Chair 

isBroken  (boolean)
age  (integer)

model  (string)
color  (string)

instance myFirstChair 

isBroken  false
age  50

model  "wood"
color  "brown"

instance mySecondChair 

isBroken  false
age  5

model  "shell"
color  "green"



complex numbers

Supplemental Notes on Complex Numbers,
Complex Impedance, RLC Circuits, and Resonance

Complex numbers

Complex numbers are expressions of the form

z = a + ib,

where both a and b are real numbers, and i =
√
−1. Here a is called the real part

of z, denoted by a = Re (z), and b the imaginary part of z, b = Im (z). A complex
number is thus specified by two real numbers, a and b, and therefore it is convenient
to think of it as a two-dimensional vector, plotting the real part on the x-axis, and
the imaginary part on the y-axis. This is called the complex plane.

a=Re(z)

b=Im(z)
z=a+ib

φ

Figure 1: The complex plane

One can manipulate complex numbers like real numbers. For instance, we can add
z1 = a1 + ib1 and z2 = a2 + ib2:

z1 + z2 = (a1 + ib1) + (a2 + ib2) = (a1 + a2) + i(b1 + b2).

Just like with vectors, we just have to add the components, which are here the real
and imaginary parts. We can also multiply complex numbers:

z1z2 = (a1 + ib1)(a2 + ib2) = (a1a2 − b1b2) + i(a2b1 + a1b2),

where we used that i2 = −1.
A useful notion is the one of the complex conjugate of z, denoted by z∗. It is

obtained by multiplying the imaginary part by (−1), which means the we are reflecting
the vector in the complex plane across the x-axis. I.e., if z = a + ib, then z∗ = a− ib.
If we now calculate

zz∗ = (a + ib)(a − ib) = a2 + iab − iab + b2 = a2 + b2,

1

quick 
reminder

with                   
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complex pane

we see that zz∗ is a positive real number, and
√

zz∗ is just the length of the vector z
in the complex plane.

To calculate the quotient of two complex numbers, we multiply both the denomi-
nator and the numerator with the complex conjugate of the denominator:

z1

z2
=

a1 + ib1

a2 + ib2
=

(a1 + ib1)(a2 − ib2)

(a2 + ib2)(a2 − ib2)

=
a1a2 + ia2b1 − ia1b2 + b1b2

a2
2 + b2

2

=
a1a2 + b1b2

a2
2 + b2

2

+ i
a2b1 − a1b2

a2
2 + b2

2

.

Example: We calculate 1/i. The complex conjugate of i is −i, hence we get

1

i
=

(1)(−i)

(i)(−i)
=

−i

1
= −i.

Thus 1/i = −i.
Let’s check this result. i times it’s inverse must of course be 1. We have

i
1

i
= 1 = i(−i) = −i2 = −(−1) = 1.

It works out!

Since a complex number can be thought of as a two-dimensional vector, it can be
specified either by its components (the real and imaginary parts), or by its length and
the angle it makes with the x-axis (see figure 1). We already saw that the length,
denoted by |z|, is given by |z| =

√
zz∗. From figure 1, we see that the angle is given

by

tanφ =
Im (z)

Re (z)
.

In particular,
z = |z| (cos φ + i sin φ) .

This can be conveniently rewritten, making use of Euler’s formula:

eiφ = cos φ + i sin φ. (1)

This formula can be derived by a Taylor expansion of both the exponential and the
sine and cosine. It tells as the the complex number eiφ is a vector of length 1 that
makes an angle φ with the x-axis. Hence we see that any complex number z can be
written as

z = |z|eiφ,

|z| being the magnitude of z and φ being the angle between z and the x-axis.

Example: Let’s calculate the magnitude and angle of z = −1 + i. The magnitude
is

√
zz∗, and zz∗ = (−1 + i)(−1 − i) = 2. The angle is determined by tanφ =

2
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intuitive interpretation



complex numbers quick 
reminder

multiplication
subtraction

addition

class Complex(object): 
    def __init__(self, re, im): 
        self.re = re 
        self.im = im 
 
    def add(self, other): 
        return Complex(self.re + other.re, 
                       self.im + other.im) 
 
    def sub(self, other): 
        return Complex(self.re - other.re, 
                       self.im - other.im) 
 
    def mul(self, other): 
        return Complex(self.re*other.re - self.im*other.im, 
                       self.im*other.re + self.re*other.im)

z1 = Complex(2,-1) 
z2 = Complex(2,-4) 
 
z = z1.add(z2) 
print("{0} + {1} = {2}".format(z1,z2,z)) 

z = z1.sub(z2) 
print("{0} - {1} = {2}".format(z1,z2,z)) 

z = z1.mul(z2) 
print("{0} * {1} = {2}".format(z1,z2,z))

2-i + 2-4i = 4-5i 
2-i - 2-4i = 3i 
2-i * 2-4i = -10i



complex numbers quick 
reminder

multiplication
subtraction

addition

class Complex(object): 
    def __init__(self, re, im): 
        self.re = re 
        self.im = im 
 
    def __add__(self, other): 
        return Complex(self.re + other.re, 
                       self.im + other.im) 
 
    def __sub__(self, other): 
        return Complex(self.re - other.re, 
                       self.im - other.im) 
 
    def __mul__(self, other): 
        return Complex(self.re*other.re - self.im*other.im, 
                       self.im*other.re + self.re*other.im)

z1 = Complex(2,-1) 
z2 = Complex(2,-4) 
 
z = z1 + z2 
print("{0} + {1} = {2}".format(z1,z2,z)) 

z = z1 - z2 
print("{0} - {1} = {2}".format(z1,z2,z)) 

z = z1 * z2 
print("{0} * {1} = {2}".format(z1,z2,z))

2-i + 2-4i = 4-5i 
2-i - 2-4i = 3i 
2-i * 2-4i = -10ioperator overloading



complex numbers

class Complex(val re: Double, val im: Double) { 

  def add(c: Complex) = new Complex(re + c.re, im + c.im) 

  def +(c: Complex) = new Complex(re + c.re, im + c.im) 

  def +(d: Double) = new Complex(re + d, im) 

  def this(re: Double) = this(re, 0) 

} 

implicit def fromDouble(d: Double) = new Complex(d)

val z1 = new Complex(2,-1) 
val z2 = new Complex(2,-4) 
 
var z = z1.add(z2) 
println(s"$z1 + $z2 = $z") 
z = z1 + z2 
println(s"$z1 + $z2 = $z") 
z = z1 + 6 
println(s"$z1 + 6 = $z") 
 
z = 6 + z1 
println(s"6 + $z1 = $z")

2.0-1.0i + 2.0-4.0i = 4.0-5.0i 
2.0-1.0i + 2.0-4.0i = 4.0-5.0i 
2.0-1.0i + 6 = 8.0-1.0i 
6 + 2.0-1.0i = 8.0-1.0i

operator & constructor overloading

implicit conversion



class declaration
class Complex(val re: Double, val im: Double) { 

  def add(c: Complex) = new Complex(re + c.re, im + c.im) 

  def +(c: Complex) = new Complex(re + c.re, im + c.im) 

  def +(d: Double) = new Complex(re + d, im) 

  def this(re: Double) = this(re, 0) 
} 
implicit def fromDouble(d: Double) = new Complex(d)

class Complex(object): 

    def __init__(self, re, im): 
        self.re = re 
        self.im = im 

    def add(self, other): 
        return Complex(self.re + other.re, 
                       self.im + other.im) 

    def __add__(self, other): 
        return Complex(self.re + other.re, 
                       self.im + other.im)

class declaration & constructor

class declaration 

method

method

operator overloading

operator overloading

constructor

constructor overloading

implicit conversion



abstraction & modularization



modularization consists in dividing a complex object into 
elemental objects that can be developed independently

the encapsulation offered by objects is the cornerstone of 
modularization because it hides implementation details

abstraction & modularization

once elemental objects have been developed and tested, 
they can be assembled into a more complex object

this is known as code reuse



12 : 30one four-digit display?

two two-digit displays? 30 12 

abstraction & modularization
example of a digital clock

OR



class NumberDisplay(val limit: Int, private var value : Int = 0) { 
 
  def increment() { 
    value = (value + 1) % limit 
  } 
 
  def set(value: Int) { 
    this.value = value % limit 
  } 
 
  def get : Int = { this.value } 
 
  override def toString: String = { 
    if(value < 10) 
      "0" + value 
    else 
      value.toString 
  } 
}

NumberDisplay class

val number = new NumberDisplay(24) 
println(s"number = $number") 
 
number.set(22) 
println(s"number = $number") 
 
number.increment() 
println(s"number = $number") 
 
number.increment() 
println(s"number = $number")

number = 00 
number = 22 
number = 23 
number = 00



class ClockDisplay() { 
  val hours = new NumberDisplay(24) 
  val minutes = new NumberDisplay(60) 
 
  def timeClick { 
    minutes.increment() 
    if (minutes.get == 0) 
      hours.increment() 
  } 
 
  def set(hours:Int, minutes:Int) { 
    this.hours.set(hours) 
    this.minutes.set(minutes) 
  } 
 
  override def toString: String =  hours + ":" + minutes 
}

ClockDisplay class
val clock = new ClockDisplay 
println(s"clock = $clock") 
 
clock.set(10,58) 
println(s"clock = $clock") 
 
clock.timeClick 
println(s"clock = $clock") 
 
clock.timeClick 
println(s"clock = $clock") 
 
clock.set(23,59) 
println(s"clock = $clock") 
 
clock.timeClick 
println(s"clock = $clock") 

clock = 00:00 
clock = 10:58 
clock = 10:59 
clock = 11:00 
clock = 23:59 
clock = 00:00



object diagram

clock: 
ClockDisplay 

hours 

minutes

:NumberDisplay 

limit 

value

24

17

:NumberDisplay 

limit 

value

60

24


