
spatial tree
algorithms

learning
objectives

learn the characteristics of spatial data

learn several spatial indexing data structures

learn basic algorithms for using such structures

hardware

your software

algorithms

system software

mathematical visualization, e.g., proof 
without words, mandelbrot sets

z 7! zd + ca2 + b2 = c2

development made possible by exponential progress
in computer graphics, with multiple applications

a branch of computer science focusing on data
structures & algorithms for solving geometric problems

computational geometry

computer-aided engineering, 
e.g., mechanical design

geographic information systems, e.g.,
location search & route planning

computer vision e.g.,  
3D graphics is games

https://en.wikipedia.org/wiki/Computer_science

with 1-dimensional data, the static case is 
rather simple and solved by sorting the data

spatial data is intrinsically multidimensional, so there 
is no natural ordering of data (e.g., of points)

computational geometry
what’s specific to spatial data?

with 1-dimensional data, natural ordering
implicitly partitions the data, e.g., binary tree

with multidimensional data, the static case is far from
simple and solved by several partitioning techniques

typical problems
computational geometry

nearest neighbor: given a set of points P,
find which one is closest to a target point pt

x

y

range queries: given a set of points P, find
the points contained within a given rectangle

intersection queries: given a set of rectangles R,
find which rectangles intersect a target rectangle

collision detection: given a set of 
shapes S, find the intersections
between all these shapes

typical approaches
computational geometry

brute-force algorithm

nearest neighbor: given a set of
points P, find which one is closest
to a target point pt

NEAREST–NEIGHBOR (P, pt)
 p ⟵ NIL
 min ⟵ ∞
 for each pi ∈ P
 if distance(pi, pt) < min
 min ⟵ distance(pi, pt)
 p ⟵ pi

 return (p, min)
Complexity: O(n), with n = |P|

spatial tree structures

Complexity: O(log n), with n = |P|

they index spatial objects

quad-trees
R-trees

kd-trees

a recursive tree, where each node has between M and mmmmm 
children, except for the root which has at least two

m =

�
M
2

⌫

all leaves are at the same level, i.e., the tree is height balanced

only leaf nodes contain actual spatial object entries, each
consisting of the spatial object itself and a minimum bounding
region (mbr) containing that object, i.e., object = (shape, mbr)

internal nodes contain children entries, each consisting of a link
to the child node and an mbr covering all children nodes of

that child, i.e., node = (child, mbr)

an minimum bounding region is typically of 
the form mbr = (xmin, ymin, xmax, ymax)

R-tree A. Guttman. R-trees: A dynamic index structure for spatial searching.
In Proceedings of the 1984 ACM SIGMOD International Conference on

Management of Data, pages 47–57, New York, NY, USA, 1984. ACM.

6

9

5

4

7
8

3

1

2

only leaf nodes contain actual spatial object entries, each
consisting of the spatial object itself and a minimum bounding
region (mbr) containing that object, i.e., object = (shape, mbr)

R5

R4

R3

R-tree

R6

R2

R1

96 4 5 1 2 3 7 8

R1 R2

R3 R4 R5 R6

root

root

important: the root also contains a
minimum bounding box

internal nodes contain children entries, each consisting of a link
to the child node and an mbr covering all children nodes of

that child, i.e., node = (child, mbr)

INTERSECT (node, region)
 if node.mbr ⊂ region
 return { object | object ∈ REACHABLE-LEAVES(node) }
 if node is a leaf
 return { object ∈ node | object.mbr ∩ region ≠ ∅ }
 result ⟵ ∅
 for each kid ∈ node.children
 if kid.mbr ∩ region ≠ ∅
 result = result ∪ INTERSECT (kid.child, region)
 return result

SEARCH (node, shape)
 if node is a leaf
 if ∃object ∈ node : object.shape = shape
 return object
 return NIL
 for each kid ∈ node.children
 if shape.mbr ⊆ kid.mbr
 return SEARCH(kid.child, shape)
 return NIL

R-tree

important: the root also contains a
minimum bounding box

96 4 5 1 2 3 7 8

R1 R2

R3 R4 R5 R6

root

a recursive tree where each internal node has four children

quad-tree R. A. Finkel and J. L. Bentley. Quad trees a
data structure for retrieval on composite

keys. Acta Informatica, 4(1):1–9, 1974.

like R-trees, only leaf nodes store actual geometrical objects

predefined partitioning with subcells (quadrants) named as North
West (NW), North-East (NE), South-West (SW) and South-East (SE)

each node represents a cell in the geometrical space, with its
children partitioning that cell into an equally sized subcell

AB
C D

F E
G H

J
K

I
L

M
R

S T

U
V W

XY

O N

QP

root
NW

NE SW

SE

R

F E G H

B A C D J I K L V W X Y

M S

T U

O N P Q

quad-tree
region quad-tree root

NW

NE SW

SE

0

0 1 0 1

1 1 0 0 1 1 1 0 1 1 0 0

0 1

0 0

1 0 1 0

root
NW

NE SW

SE

point-region quad-tree

NW

NE SW

SE

quad-tree
region quad-tree

point-region quad-tree

root
NW

NE SW

SE

0

0 1 0 1

1 1 0 0 1 1 1 0 1 1 0 0

0 1

0 0

1 0 1 0

root

∅ ∅

∅ ∅

∅

∅ ∅

∅ ∅

∅ ∅

∅ ∅

ADD (node, point)
 if point ∉ node.cell
 return FALSE
 if node is a leaf
 if node.point = point
 return FALSE
 if node.point = NIL
 node.point ⟵ point
 return TRUE

 quadrant ⟵ FIND-QUADRANT(node, point)
 if node is a leaf
 SUBDIVIDE(node)
 return ADD (node[quadrant], point)

quad-tree

NW

NE SW

SE
root

∅ ∅

∅ ∅

∅

∅ ∅

∅ ∅

∅ ∅

∅ ∅

INTERSECT (node, region)
 if node is a leaf
 if node.point ∈ region return { node.point }
 return ∅

 if node.cell ⊂ region
 return { node.point | node ∈ REACHABLE-LEAVES(node) }

 result ⟵ ∅
 for each quadrant ∈ { NW, NE, SW, SE }
 if node[quadrant].cell ∩ region ≠ ∅
 result = result ∪ INTERSECT (node[quadrant], region)
 return result

kd-tree J.L. Bentley. Multidimensional binary search trees
used for associative searching. Commun. ACM,

18(9):509–517, September 1975.

in addition, each internal node divides the k-dimensional
space into two parts known as half-spaces

a kd-tree (short for k-dimensional tree) is a binary tree
in which every node is a k-dimensional point

all points in one half space are contained in the left
subtree of the node and all points in the other half

space contained in the right subtree

all nodes at the same level (height) divide the k-dimensional
space according to the same cutting dimension (axis)

k-d-tree
1

8

3

105

4

2

9

6

7

ADD (node, point, cutaxis)
 if node = NIL
 node ⟵ CREATE-NODE
 node.point = point
 return node
 if point[cutaxis] ≤ node.point[cutaxis]
 node.left = ADD(node.left, point, (cutaxis + 1) mod k)
 else
 node.right = ADD(node.right, point, (cutaxis + 1) mod k)
 return node

1

32

54 87

6 9 10

x-axis

y-axis

x-axis

y-axis

