
spatial tree 
algorithms



learning 
objectives

learn the characteristics of spatial data 

learn several spatial indexing data structures 

learn basic algorithms for using such structures

hardware

your software

algorithms

system software



mathematical visualization, e.g., proof 
without words, mandelbrot sets

z 7! zd + ca2 + b2 = c2

development made possible by exponential progress 
in computer graphics, with multiple applications

a branch of computer science focusing on data 
structures & algorithms for solving geometric problems

computational geometry

computer-aided engineering, 
e.g., mechanical design 

geographic information systems, e.g., 
location search & route planning 

computer vision e.g.,  
3D graphics is games

https://en.wikipedia.org/wiki/Computer_science


with 1-dimensional data, the static case is 
rather simple and solved by sorting the data

spatial data is intrinsically multidimensional, so there 
is no natural ordering of data (e.g., of points)

computational geometry
what’s specific to spatial data?

with 1-dimensional data, natural ordering 
implicitly partitions the data, e.g., binary tree

with multidimensional data, the static case is far from 
simple and solved by several partitioning techniques



typical problems
computational geometry

nearest neighbor: given a set of points P, 
find which one is closest to a target point pt

x

y

range queries: given a set of points P, find 
the points contained within a given rectangle

intersection queries: given a set of rectangles R, 
find which rectangles intersect a target rectangle

collision detection: given a set of 
shapes S, find the intersections 
between all these shapes



typical approaches
computational geometry

brute-force algorithm

nearest neighbor: given a set of 
points P, find which one is closest 
to a target point pt

NEAREST–NEIGHBOR (P, pt) 
 p ⟵ NIL 
 min ⟵ ∞ 
 for each pi ∈ P 
  if distance( pi, pt) < min 
   min ⟵ distance( pi, pt) 
   p ⟵ pi 

 return ( p, min)
Complexity:  O(n),  with n = |P|

spatial tree structures

Complexity:  O(log n),  with n = |P|

they index spatial objects

quad-trees
R-trees

kd-trees



a recursive tree, where each node has between M and mmmmm 
children, except for the root which has at least two

m =

�
M
2

⌫

all leaves are at the same level, i.e., the tree is height balanced

only leaf nodes contain actual spatial object entries, each 
consisting of the spatial object itself and a minimum bounding 
region (mbr) containing that object, i.e., object = (shape, mbr)

internal nodes contain children entries, each consisting of a link 
to the child node and an mbr covering all children nodes of 

that child, i.e., node = (child, mbr)

an minimum bounding region is typically of 
the form mbr = (xmin, ymin, xmax, ymax)

R-tree A. Guttman. R-trees: A dynamic index structure for spatial searching. 
In Proceedings of the 1984 ACM SIGMOD International Conference on 

Management of Data, pages 47–57, New York, NY, USA, 1984. ACM.
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only leaf nodes contain actual spatial object entries, each 
consisting of the spatial object itself and a minimum bounding 
region (mbr) containing that object, i.e., object = (shape, mbr)

R5

R4

R3

R-tree

R6

R2

R1

96 4 5 1 2 3 7 8

R1 R2

R3 R4 R5 R6

root

root

important: the root also contains a 
minimum bounding box

internal nodes contain children entries, each consisting of a link 
to the child node and an mbr covering all children nodes of 

that child, i.e., node = (child, mbr)



INTERSECT (node, region) 
 if node.mbr ⊂ region 
  return { object | object ∈ REACHABLE-LEAVES(node) } 
 if node is a leaf 
  return { object ∈  node | object.mbr ∩ region ≠ ∅ } 
 result ⟵ ∅ 
 for each kid ∈ node.children 
  if kid.mbr ∩ region ≠ ∅ 
   result = result ∪ INTERSECT (kid.child, region) 
 return result

SEARCH (node, shape) 
 if node is a leaf 
  if ∃object ∈ node : object.shape = shape  
   return object 
  return NIL 
 for each kid ∈ node.children 
  if shape.mbr ⊆ kid.mbr 
   return SEARCH(kid.child, shape) 
 return NIL

R-tree

important: the root also contains a 
minimum bounding box
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a recursive tree where each internal node has four children

quad-tree R. A. Finkel and J. L. Bentley. Quad trees a 
data structure for retrieval on composite 

keys. Acta Informatica, 4(1):1–9, 1974.

like R-trees, only leaf nodes store actual geometrical objects

predefined partitioning with subcells (quadrants) named as North 
West (NW), North-East (NE), South-West (SW) and South-East (SE)

each node represents a cell in the geometrical space, with its 
children partitioning that cell into an equally sized subcell
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ADD (node, point) 
 if point ∉ node.cell 
  return FALSE 
 if  node is a leaf 
  if  node.point = point 
   return FALSE 
  if  node.point = NIL 
   node.point ⟵ point 
   return TRUE 

 quadrant ⟵ FIND-QUADRANT(node, point) 
 if  node is a leaf 
  SUBDIVIDE(node) 
 return ADD (node[quadrant], point)
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INTERSECT (node, region) 
 if  node is a leaf 
  if  node.point ∈ region  return { node.point } 
  return ∅ 

 if node.cell ⊂ region 
  return { node.point | node ∈ REACHABLE-LEAVES(node) } 
  
 result ⟵ ∅ 
 for each quadrant ∈ { NW, NE, SW, SE } 
  if node[quadrant].cell ∩ region ≠ ∅ 
   result = result ∪ INTERSECT (node[quadrant], region) 
 return result



kd-tree J.L. Bentley. Multidimensional binary search trees 
used for associative searching. Commun. ACM, 

18(9):509–517, September 1975.

in addition, each internal node divides the k-dimensional 
space into two parts known as half-spaces

a kd-tree (short for k-dimensional tree) is a binary tree 
in which every node is a k-dimensional point

all points in one half space are contained in the left 
subtree of the node and all points in the other half 

space contained in the right subtree

all nodes at the same level (height) divide the k-dimensional 
space according to the same cutting dimension (axis)



k-d-tree
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ADD (node, point, cutaxis) 
 if node = NIL  
  node ⟵ CREATE-NODE 
  node.point = point 
  return node 
 if  point[cutaxis] ≤ node.point[cutaxis]   
  node.left = ADD(node.left, point, (cutaxis + 1) mod k) 
 else 
  node.right = ADD(node.right, point, (cutaxis + 1) mod k) 
 return node
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