

learning objectives

- learn the characteristics of spatial data
- learn several spatial indexing data structures
- learn basic algorithms for using such structures
computational geometry
a branch of computer science focusing on data structures \& algorithms for solving geometric problems
development made possible by exponential progress in computer graphics, with multiple applications
mathematical visualization, e.g., proof without words, mandelbrot sets
geographic information systems, e.g., location search \& route planning
computer vision e.g., 3D graphics is games computer-aided engineering, e.g., mechanical design

computational geometry

 what's specific to spatial data?with I-dimensional data, natural ordering implicitly partitions the data, e.g., binary tree
spatial data is intrinsically multidimensional, so there is no natural ordering of data (e.g., of points)
with I-dimensional data, the static case is rather simple and solved by sorting the data
with multidimensional data, the static case is far from simple and solved by several partitioning techniques
computational geometry typical problems
nearest neighbor: given a set of points P, find which one is closest to a target point p_{t}
range queries: given a set of points P, find the points contained within a given rectangle

intersection queries: given a set of rectangles R, find which rectangles intersect a target rectangle

Collision detection: given a set of shapes S, find the intersections between all these shapes

computational geometry typical approaches

 brute-force algorithm

 brute-force algorithm}
nearest neighbor: given a set of points P, find which one is closest to a target point p_{t}

NEAREST-NEIGHBOR $\left(P, p_{t}\right)$

$$
\begin{aligned}
& p \leftarrow \mathrm{NIL} \\
& \min \leftarrow \infty \\
& \text { for } \operatorname{each} p_{i} \in P \\
& \quad \text { if } \operatorname{distance}\left(p_{i}, p_{t}\right)<\min \\
& \quad \min \leftarrow \operatorname{distance}\left(p_{i}, p_{t}\right) \\
& \quad p \leftarrow p_{i} \\
& \text { return }(p, \text { min })
\end{aligned}
$$

spatial tree structures
Complexity: $O(\log n)$, with $n=|P|$
they index spatial objects
R-trees
quad-trees
kd-trees
a recursive tree, where each node has between M and $m=\left\lfloor\frac{M}{2}\right\rfloor$ children, except for the root which has at least two
only leaf nodes contain actual spatial object entries, each consisting of the spatial object itself and a minimum bounding region (mbr) containing that object, i.e., object $=($ shape, $m b r)$
internal nodes contain children entries, each consisting of a link to the child node and an mbr covering all children nodes of that child, i.e., node $=(c h i l d$, mbr $)$
an minimum bounding region is typically of the form $m b r=\left(x_{\min }, y_{\min }, x_{\max }, y_{\max }\right)$
all leaves are at the same level, i.e., the tree is height balanced

R-tree

only leaf nodes contain actual spatial object entries, each consisting of the spatial object itself and a minimum bounding region (mbr) containing that object, i.e., object $=$ (shape, mbr)
internal nodes contain children entries, each consisting of a link to the child node and an mbr covering all children nodes of that child, i.e., node $=($ child, $m b r)$

R-tree

INTERSECT (node, region)
if node.mbr \subset region
return $\{$ object \mid object \in REACHABLE-LEAVES(node) $\}$
if node is a leaf return $\{$ object \in node \mid object.mbr \cap region $\neq \varnothing$ \}
result $\leftarrow \varnothing$
for each kid \in node.children
if $k i d . m b r \cap$ region $\neq \varnothing$ result $=$ result \cup INTERSECT (kid.child, region)
return result

SEARCH (node, shape)
if node is a leaf
if \exists object \in node $:$ object.shape $=$ shape return object
return NIL
for each kid \in node.children
if shape.mbr \subseteq kid. $m b r$ return SEARCH(kid.child, shape) return NIL
quad-tree
a recursive tree where each internal node has four children
each node represents a cell in the geometrical space, with its children partitioning that cell into an equally sized subcell
predefined partitioning with subcells (quadrants) named as North west (NW), North-East (NE), South-west (Sw) and South-East (SE)
like R-trees, only leaf nodes store actual geometrical objects

R			F	E	B	A
			G	H	C	D
			J	I	M	
			K	L		
S	T		0		N	
U	V	W	P		Q	
		X				

quad-tree

region quad-tree

point-region quad-tree

quad-tree

region quad-tree

point-region quad-tree

-		$\bullet{ }^{\circ}$		
		- \bullet		
。				
	\bullet			
	-			

quad-tree

 INTERSECT (node, region)

 INTERSECT (node, region)}
if node is a leaf
if node.point \in region return $\{$ node.point $\}$
return \varnothing

```
if node.cell \(\subset\) region
return \(\{\) node.point \(\mid\) node \(\in\) REACHABLE-LEAVES(node) \(\}\)
```

result $\leftarrow \varnothing$
for each quadrant $\in\{$ NW, NE, SW, SE $\}$
if node[quadrant].cell \cap region $\neq \varnothing$
result $=$ result \cup INTERSECT (node[quadrant], region)
return result
quadrant \leftarrow FIND-QUADRANT(node, point)
if node is a leaf
SUBDIVIDE(node)
return ADD (node[quadrant], point)

kd-tree
a $k d$-tree (short for k-dimensional tree) is a binary tree in which every node is a k-dimensional point
in addition, each internal node divides the \boldsymbol{k}-dimensional space into two parts known as half-spaces
all points in one half space are contained in the left subtree of the node and all points in the other half space contained in the right subtree
all nodes at the same level (height) divide the k-dimensional space according to the same cutting dimension (axis)

$4 \rightarrow 2$

x-axis
y-axis
x-axis
y-axis

ADD (node, point, cutaxis)
if node $=$ NIL
node \leftarrow CREATE-NODE
node.point $=$ point
return node
if point[cutaxis] \leq node.point[cutaxis]
node.left $=\mathrm{ADD}($ node.left, point, $($ cutaxis +1$) \bmod k)$
else
node.right $=\mathrm{ADD}($ node.right, point, $($ cutaxis +1$) \bmod k)$
return node

