Remote Method
Invocation

Benoit Garbinato

M ‘ HEC ‘ dop| a b distributed object programming lab

Fundamental idea (1)

O Rely on the same programming paradigm
for distributed applications as for
centralizeo applications

O tn procedural lLanguages, we will rely on
the notton of Remote Procedure call (RPC)

O (n object-oriented Language, we will rely on
the notion of Remote Method Invocation (RMI)

dop; : ;

Remote Method Invocation © Benoit Garbinato

Fundamental idea (2)

(e cerve

|
1
1
-

call / invocation

-
1
1
1
1
1
1
1
1
1

Process A Process B

A remote method (procedure) is transparently Lnvoked

(called) across the network, as Lf Lt was Local

Remote Method Invocation © Benoit Garbinato d (0] p | i
a

RPC: some history

1979

mid 0’s

1982

mid 90's

Toda Y

Bill Joy introduces the “Berkeley Bnhancements”, mainly interprocess
communication (IPC) facilities. The modern network unix is born (BSD).

Sun Microsystems uses BSD Unix as operating system for their
workstations. They extends it with RPC, on top of which they build NFs and
NIs (later on NisS+).

The Open Software Foundation (OSF) is formed to develop a portable open
%S’cem platform, known as the Distributed Computing Environment (DCE).
¢ latter proposes PCE RPC as basic communication mechanism.

The Object Management Group (OMG) follows the same approach to devise
the Common Object Request Broker Architecture (CORBA) for object-based
wmiddleware. At the same time, Sun greatly simplifies § extends the RMI
paradigm its Java §_Jini platforms.

E\/erg body talks about Web Services as the next “big thing”, but it is merely
a web-flavored version of the RPC/RMI paradigm, using HTTP § XML.

Remote Method Invocation © Benoit Garbinato d (O] p ‘ i
a

A local method invocation

call stack

s

result

para weter 1
parameter 2

I g | EEE=—
para weter n

e

stack frame of foo(...)

«

l Sérvér |

=l
‘parameters
result = server.foo (parameters)
o result

Remote Method Invocation © Benoit Garbinato

A remote method invocation

[client] [server]
parameters * * result YCS(AH:* f parameters
client stub server stub
1 1 1 1
transport transport
request repLg YC‘PL5 request

network -

LT

~/

Remote Method Invocation © Benoit Garbinato

dop

a b

The notion of proxy

O A proxy is the representative of a server
objec’c in the address space of the client

O A proxy bmplements the same interface
as the server (but not tn the same way)

e
foo() fon(. i o
T > this is where the
real work Ls downe
client space | 7 ! : server space
Remote Method Invocation © Benoit Garbinato d (0] p | i

Java RMI

O tn)ava, Remote method nvocation is tntegrated
ln the standard class library, via packages such
as Ja\/a rmi, Java rmi.server, ete.

O (naddition , Sun’s Java Development Kit (JDK)
includes a set of tools for supporting RM, e.9.,
rmic, rmireg Lstr5 ete.

O We can distinguish three distinet times when
building rmi-based applications, namely
development, deployment and execution.

Remote Method Invocation © Benoit Garbinato d (O] p ‘
a

Execution time

1. The server object registers its name § proxy
Ln the naming service (rmi registry)

2. The client object obtains a proxy of the
server object via that naming service

2. The client object can then Lnvoke the server
proxy, which will thew forward the
Lnvocation to the server object

Remote Method Invocation © Benoit Garbinato d O) p
! b

Server side: create & bind

public class CalendarApp {

public static void main(String[] args) throws Exception {
String theName= "Calendar";

CalendarServer theServer=<EEEE§a1endarServe£Z]3:>

< Naming.rebind(theName, theServer)y

System.out.println("Calendar service is running!");

Remote Method Invocation © Benoit Garbinato d (0) p
!

Client side: lookup & use

public class CalendarClient {
public static void main(String[] args) throws Exception {
String calServName= "//www.acme.com/Calendar";
CalendarService calServ=
(CalendarService{Naming.lookup (calServName) >

calServ.createCalendar("James");

Collection allCals= calServ.getCalendars();
DayCalendar dno= calServ.getCalendar("Dr. No");
String[] elist= dno.listEvents();

Remote Method Invocation © Benoit Garbinato d (0] p | i
a

Calendar Application

rmi registry | calendar service | | Dr.no's calendar
—l— 1

| rebind ()

Lookeup(...) ‘g‘

createCalendar ()a mesl) new Daycalendartimp (James")

Yox

|-
'ljames‘ calendar |

getcalendar ("Br.No") !

1
» !
P> |
|

|

|

|

|

!

-
—

ListEvents ()

Listevents ()

Remote Method Invocation © Benoit Garbinato d (O] p ‘

Development time

1. Define the interface of the remote service

2. Implement the client and server classes tn
a decoupled way, thawnks to the interface

3. Use javac to compile all above sources

4. Use the rmic comptler to create the proxy of
the remote class for you

Remote Method Invocation © Benoit Garbinato d (0] p | i
a

Typical remote interfaces

p Java ¥
public interface CalendarServic
public DayCalendar createCalendar(String name KIhrows RemoteExceptioE>CalendarException;
public DayCalendar getCalendar(String name) throws RemoteException, CalendarException;
public ArrayList getCalendars() throws RemoteException;
public boolean exists(String name) throws RemoteException;

import java.util.*;
import java.rmi.*;

public interface DayCalendar extends Remote {
public boolean isFree(Date date) throws RemoteException;
public DayEvent plan(DayEvent event) throws RemoteException, CalendarException;
public String[] listEvents() throws RemoteException;
public String getName() throws RemoteException;

Remote Method Invocation © Benoit Garbinato d (O] p ‘ i

A typical remote class

public class CalendarServesZgxiends UnicastRemoteObject implements CalendarService { —>
private Hashtable calendars;

public CalendarServer() throws RemoteException {
calendars= new Hashtable();
}
public DayCalendar createCalendar(String name) throws RemoteException, CalendarException {
if (calendars.containsKey(name)) throw new CalendarException(name + "\" already exists.");
DayCalendar newCal= new DayCalendarImpl (name);
calendars.put(name, newCal);
return newcCal;

}

public DayCalendar getCalendar(String name) throws RemoteException, CalendarException {
if (!calendars.containsKey(name)) throw new CalendarException(name + "\" does not exist.");
return ((DayCalendar) calendars.get(name));

}

public ArraylList getCalendars() throws RemoteException {
return new ArrayList(calendars.values());

}

public boolean exists(String name) throws RemoteException {
return calendars.containsKey(name);

}

Remote Method Invocation © Benoit Garbinato d (0] p |

Argument passing rules

1. An argument or a return value can be a primitive
type, a local serializable object (i.e, mplementing
java.io.serializable), or a remote object.

2. Aprimitive type value is passed bg COPY-

2. Alocal objeot is also passed bg cOpY, using
standard object serialization.

4. A remote object is passed by reference, L.e., lts
proxy is passed rather thaw the object itself.

Remote Method Invocation © Benoit Garbinato d (O] p ‘ i

Deployment time

1. Startthe rmi registry

2. Startthe server process

3. Start the client process @ ((e
—]

; [Paycatendar
i \ rmli
e a— sy | |
® Er—
(o] | [¢) e
| = = | caicndorsr
Java Java o
—
o process process
) ?
client machine server machine
Remote Method Invocation © Benoit Garbinato d (0] p
Il a b

Checkup

Ow the server we have:
CalendarServer theServer= new CalendarServer();
whereas on the client we have:

CalendarService calServ=
(CalendarService) Naming.lookup (calServName);

why this difference?

a

where are calendars Located?

a

a

How does the client get access to calendars?

O

How do we communicate with the i registry ?

Remote Method Invocation © Benoit Garbinato d (0) p | i
a

RMI callbacks (1)

O A remote object does not need to be registered
Ln the naming service to be remotely
accessible, e.g., PaycCalendartmpl.

O The client can also make an object remotely
accesstble to the server, allowing the latter to
asywnchronously call back the client, e.g.,
to notify the client that a new event was
scheduled on some calendar.

Remote Method Invocation © Benoit Garbinato d (0] p | i
a

public interface_calen i {
ublic void eventPlanned(DayEvent e) throws RemoteExceptioni>

}

public interface DayCalendar extends Remote {
public boolean isFree(Date date) throws RemoteException;
public DayEvent plan(DayEvent event) throws RemoteException, CalendarException;
public String[] listEvents() throws RemoteException;

public_strj oteExcention:
ublic void addListener(CalendarListener 1) throws RemoteException; —>

}

public class CalendarClient extends UnicastRemoteObject implements CalendarListener {

public static void main(String[] args) throws Exception {
String calServName= "//www.acme.com/Calendar";
CalendarService calServ= (CalendarService) Naming.lookup(calServName);
DayCalendar dno= calServ.getCalendar("Dr. No");
CalendarlListener calisbe—RoW—cabrendarcliont ()

no.addListener (calist);
no.plan(new DayEvent(new Date(), "Conquer the world'
1
public void eventPlanned(DayEvent e) throws RemoteException {
System.out.println("--> New event planned: " + e);

}

}

Remote Method Invocation © Benoit Garbinato d (O] p ‘ i

RMI callbacks (3)

public class DayCalendarImpl extends UnicastRemoteObject implements DayCalendar {

private TreeSet eventSet;
private ArrayList listeners;

public void addListener(CalendarListener 1) throws RemoteException {

listeners.add(l);
3

private void notifyListeners(DayEvent e) {

Iterator iter= listeners.iterator();
while (iter.hasNext())

try {

}

eventSet.add(event);
notifyListeners(event);

< (CalendarListener) iter.next()).eventPlanned(el:i—>>
} catch (RemoteException re) System.err.println("Notification failed"); };
public DayEvent plan(DayEvent event) throws RemoteException, CalendarException {
if (eventSet.contains(event)) throw new CalendarException("The date is not free");

return event;

} client 1

Dr. no's calendar

aodUistener (this) "

client 2

=D plan (new Bvent(...))

§
—

Remote Method Invocation © Benoit Gar

eventPlanmed (.. @u_u

{J

T
'
1

Dynamic code download (1)
O The jJava platform allows for the

dynawmic download of classes from

any URL (Uniform Resource Locator)

Java
Source
(java)

Class Loader

Bytecode
erifier

Java Class
Libraries

Java Java
Bytecodes (\’\/Airtut?I
Java R— achine
Compiler or through reg)
network <
Java ¢

Bytecodes

Operating System |

(.class)

Hardware |

Remote Method Invocation © Benoit Garbinato

Dynamic code download (2)

O The proxy is located on the client but it
conceptually belongs to the server

0O Because we have a Java Virtual Machine
on both the server and the client, Lt Ls
possible to have the proxy class move from
the server to the client at runtime
(0[5 namtc code download)

O pynawmic code download can be used not
only for proxies but for any java class

Remote Method Invocation © Benoit Garbinato d (0] p |

Dynamic code download (3)

Jjavasjava.rmi.server.codebase=http://server.com/ >

- 2
this Ls added to the|classpath Eij
mL Vegistr5
JjavaBjava.rmi.server.codebase=http:/client.com/ > ([ewammmts ™=
web server web server —
y—%cmmgtm @ @
paycalendar @ calendartistener
(‘) ¢ E—
&
java java
caLevwla vClient client senver \
'PVDG@SS ‘PYDCESS
client machine server machine

Remote Method Invocation © Benoit Garbinato d (O] p ‘

Security viewpoint

O From a securi’ca viewpoint, downloading
classes Ls a critteal action (L.e., Potew’ciaLLg
dangerous)

O For this reason, whew code download Ls
activated (via the java.rmi.server.codebase
property), the Java Virtual Machine requires
a security manager to be tnstalled

O The security policy enforced by the security
manager can be expressed declaratively in a
security policy file

Remote Method Invocation © Benoit Garbinato d (0] p | i
a

Security manager & policy

Source ODdCZ if (System.getSecurityManager() == null)
System.setSecurityManager (new RMISecurityManager());

’ ’ ’ ’ ’ ’
command Line: Java -Bjava.security policy =my .pong
4
Policy files: |omant 2
0 5 2 € permission java.net.SocketPermission "server.com:1024-65535", "connect,accept"; g
(ng .PDLLG%) permission java.net.SocketPermission "server.com:80", "connect,accept"; %‘
grant { .
permission java.net.SocketPermission "*:1024-65535", "connect,accept"; §
permission java.net.SocketPermission "*:80", "connect,accept"; ?/1)

%
’
RuntL me: SecurityManager AccesController
] i i i
1 1

e 1
critical system call |
>l

check

|
1 1
1 1
1 1
Por 1
checkPermission() !
— U
! ! 1

Remote Method Invocation © Benoit Garbinato d (O] p ‘ i

Distributed Garbage Collection

O The Java platform transparently extends
garbage collection to distributed objects. This
extension Ls Rnowwn as Dlstributed Garbaoe
Collection (DGC).

O A remote object is collected whew there no Longer
exists any remote or local references to it

O Any object referenced by the naming service
(rmatl registrg) Ls not collected

Remote Method Invocation © Benoit Garbinato d O) p | i
a

Unreferenced vs. finalized

O By Lmplementing the unreferenced interface, a
remote object can ask to be notified whew there no
longer extsts any remote references to Lt

O In the wareferenced () wmethod, the remote object is
given the opportunity to release some resources,
e.9., the remote reference on a another remote object

public class DayCalendarImpl extends UnicastRemoteObject implements DayCalendar

< public void unreferenced() L > called bg the distributed garbage collector
System.out.println("-> Oups, I am no longer remotely referenced!");
1 called by the Local garbage collector
< protected void finalize() tNIGS Throwable { 3 —_—
System.out.print("This time, I am really about to be garbage collected...”);
System.out.print("so bye bye cruel world!");

}

}

Remote Method Invocation © Benoit Garbinato d (0) p ‘ k

Limitations of DGC

O Awn tmplementation of PGC should ensure
O Sa{e’cg, which bmplies not collecting too early

O Liveness, which implies eventually collecting

O Due to tts tnherent decentralized nature, the
Lmplementation of DGC is based on reference

counting, which poses several issues:
O It does not deal properly with circular references

O tt does not deal properly with asynchronous systems

O Partial solution: the notion of Lease

Remote Method Invocation © Benoit Garbinato

dop; :

The notion of lease

O A lease Ls a remote reference with a validity

Lbmeited L time

O tnjava, remotes references are actually leases

O tf the client does not renew its Lease before
the assoclated timeout expires, the reference
counter on the server stde is decremented

O Leases are awcomatwaLLM managed for You,
L.e., the renewal Ls automatic as long as the
client is alive and the remote reference exists

Remote Method Invocation © Benoit Garbinato

dop; : ;

