
Algorithms and Computational Thinking
Autumn 2016

Thursday, 17th November 2016

Exercise 9 - Graph Algorithms : Dijkstra’s Shor-

test path Algorithm

In this exercise, you will write a generic algorithm and implement it in
any language of your choice to find the shortest route in a unidirectional
weighted graph. In other words, you will implement Dijkstra’s shortest path
algorithm.

Consider the following graph, where the circles denote the nodes, the lines
connecting them denote the edges and the numbers represent the weights or
cost.

s

vx

yu

10

1
5 2

9

4

2

5

Dijkstras Algorithm works as below : (Source : wikipedia)

1. Assign to every node a tentative distance value : set it to zero for our
initial node and to infinity for all other nodes.

2. Set the initial node as current. Mark all other nodes unvisited. Create
a set of all the unvisited nodes called the unvisited set.

3. For the current node, consider all of its unvisited neighbours and calcu-
late their tentative distances. Compare the newly calculated tentative
distance to the current assigned value and assign the smaller one. For

1



example, if the current node A is marked with a distance of 6, and the
edge connecting it with a neighbor B has length 2, then the distance
to B (through A) will be 6 + 2 = 8. If B was previously marked with
a distance greater than 8 then change it to 8. Otherwise, keep the
current value.

4. When we are done considering all of the neighbors of the current node,
mark the current node as visited and remove it from the unvisited set.
A visited node will never be checked again.

5. If the destination node has been marked visited (when planning a
route between two specific nodes) or if the smallest tentative distance
among the nodes in the unvisited set is infinity (when planning a
complete traversal ; occurs when there is no connection between the
initial node and remaining unvisited nodes), then stop. The algorithm
has finished.

6. Otherwise, select the unvisited node that is marked with the smallest
tentative distance, set it as the new ”current node”, and go back to
step 3.

The Pseudocode using priority queue is given below (Source : wikipedia) :
A min-priority queue is an abstract data type that provides 3 basic opera-
tions, add with priority(), decrease priority() and extract min(). As mentio-
ned earlier, using such a data structure can lead to faster computing times
than using a basic queue. We have provided you with the implementation of
priority queue, you just need to import it in your code and use the functions.

Your program should output the shortest path between any two nodes in
the graph entered by the user for the graph provided above.

2


